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Modality-Balanced Contrastive Learning for RGB-D
Salient Object Detection

Hao Chen, Feihong Shen, and Lichuang Zhang

Abstract—The scarcity of labelled data is a key obstacle to
sufficient multi-modal fusion. The traditional solution that uses
ImageNet-pretrained weights as initialization usually results in
biased learning due to the cross-domain/modal gaps. In this work,
we overcome these limitations by proposing a self-supervised
learning framework. Unlike previous multi-modal contrastive
learning architectures that are mainly performed by directly
optimizing cross-modal agreement and always struggle with the
information imbalance between modalities, especially for hard
positive instances with noticeable modal-specific noises, we re-
formulate the multi-modal contrastive learning with imbalanced
data to a unimodal contrastive problem to remove the modality
gap. To this end, we combine the features from all modalities
as a new modality representation via selectively masking the
discriminative features in the strong modality to rebalance two
modalities. By performing contrastive learning on the synthetic
modality, we enable sufficient pre-training for each modality and
explicit study of cross-modal correlation for downstream multi-
modal fusion. Extensive experiments verify the effectiveness of
our framework and designs on the downstream RGB-D salient
object detection task.

Index Terms—Contrastive learning, RGB-D salient object de-
tection, Multi-modal, Self-supervised learning.

I. INTRODUCTION

Salient object detection (SOD) is to highlight the most
visual-attractive objects from a scene. With rich geometry
cues and additional contrast hints, the paired depth image
has largely advanced the accuracy and robustness of SOD,
especially for those challenging scenes with low-contrast ap-
pearance or weak lighting. Regarding the great success of
deep Convolutional Neural Networks (CNNs), various RGB-
D SOD methods based on CNNs have been proposed and
achieved impressive improvements. These works usually fol-
low a two-stream architecture, which typically includes two
parallel encoders with popular networks (e.g., ResNet [1])
as the backbone to extract unimodal features individually.
Then, the focus of these CNN-based methods is to design
diverse fusion patterns [2], [3] to boost cross-modal cross-
level feature interaction, varying feature integration strategies
[4], [5] to fully explore spatial and semantical complements,
and some enhancement policies such as the attention mecha-
nism [6], knowledge distillation [5], [7], mutual information
minimization [8] and feature disentanglement [9], to explicitly
reduce the cross-modal redundancy and improve the fusion
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adaptivity. Given the scarcity of labelled RGB-D SOD data,
these works have to use the weights pre-trained on large-
scale datasets (e.g., the ImageNet [10]) as initialization to
partly alleviate the data-hungry nature of CNNs. However,
annotating such a million-level dataset for pre-training is time-
consuming and costly, especially for dense prediction labels.
More importantly, it inevitably introduces biased initialization
and insufficient learning due to the domain gap between the
pre-training dataset and the downstream one, as well as the
modality gap between the source (i.e., RGB) and target (i.e.,
depth) modalities. Hence, this pre-training paradigm is cost-
ineffective and holds limited generalization performance.

(a) RGB (b) Depth (c) GT

Fig. 1: The strong RGB images and the weak depth images. In
examples, it’s difficult to distinguish the salient objects from
depth images.

Recently, the self-supervised learning scheme [11] directly
tackles the deficiency of labelled data by designing various
pretext tasks [12]–[14] and contrastive learning (CL) [15],
[16] is one of the most popular paradigm. To date, a majority
of contrastive learning frameworks are designed for unimodal
data. In their domains, positive pairs are generated by dif-
ferent transformations from the same instance and negative
pairs are samples from different scenes. By pulling positive
pairs together and pushing negative pairs away, contrastive
learning can learn feature representations invariant to certain
transformations. Multi-modal contrastive learning is a newly
rising problem and the basic philosophy is extending the
pretext of within-modal instance discrimination to cross-modal
agreement, that is regarding the matching multi-modal instance
as the positive sample and unpaired ones as negative samples.

Noticeable works in this line include conducting audio-
visual CL to learn unimodal representations [15], [16], image-
text CL for cross-modal generation (i.e., image caption) [17]
and the Point-RGB CL for 3D point understanding [18].
Differently, our task holds spatial-aligned multi-modal data
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and the downstream is multi-modal joint inference, which
requires each modality to be well learned. Also, it will
introduce remarkable benefits for the downstream task if
cross-modal correlation can be explicitly explored in the CL
process. As shown in Fig. 1, RGB and depth images hold
huge differences of data distribution and structure and modal-
specific noises. Also, RGB usually carries more and stronger
cues than the paired depth. With such a large cross-modal
gap, it is difficult to learn sufficient representation from each
modality by optimizing the cross-modal agreement. The con-
trastive loss may be optimized by merely learning the low-level
spatial alignment (such as some shared object edges), thus
failing to extract high-level semantics from each modality. An
alternative solution as done in [19], [20] is to combine multi-
modal data as a joint instance to generate positive/negative
samples by controlling the component distribution. In their
settings, negative samples are crafted by carefully tuning the
distribution of unaligned modalities with hyper-parameters,
which is laborsome and the resulting negative samples with
different distributions actually hold varying similarities to the
anchor.

Instead, we propose a new multi-modal contrastive learning
paradigm, namely Modality-balanced Contrastive Fusion, to
carefully pre-train each modality and cross-modal correlation
in RGB-D pairs. First, we combine the aligned RGB-D pairs
as a new synthetic modality for instance discrimination. Such a
simple scheme fills the modality gap and enables the encoders
to learn high-level semantics to differentiate input scenes.
More importantly, it is independent of any hyper-parameters
to set the modality distribution and largely ease the work
of generating negative samples. However, it will still lead
to biased sub-optimization by direct concatenating represen-
tations from all modalities as the joint instance. Due to the
modality imbalance shown in Fig. 1, the network may depend
on the stronger modality to discriminate scenes. To avoid the
ignorance of the weak depth modality, we manually weaken
the strong RGB modality by masking its most discriminative
features in the modality synthesis process. In doing so, the
depth modality has to learn more supplementary cues for scene
discrimination. In summary, the main contributions of this
work are as follows:
• We propose a new contrastive framework for self-

supervised pre-training on imbalanced multi-modal data.
• We reformulate the cross-modal agreement to instance

discrimination scheme to remove the modality gap by
introducing an attentive mask modality-synthesis method.

• Comprehensive experiments on wide public datasets of
RGB-D salient object detection consistently demonstrate
the efficacy of our designs and the large improvement
over state-of-the-art supervised learning methods.

II. RELATED WORK

A. RGB-D Saliency Objection Detection

Initial RGB-D SOD methods utilize handcrafts cues [21]–
[24] to infer saliency by local/global contrasts. However,
these handcrafts features are weak in high-level semantics and
hold limited generalization ability. The great success of deep

convolutional neural networks (CNNs) motivates the RGB-D
SOD community to design CNN-based detectors and generate
various noticeable architectures. Single-stream models [25]
that fuse the modalities directly and adopt an shared encoder to
extract joint features. Two-stream architecture is a dominated
one, which [2] use two encoders to extract features from
each modality and designs various multi-scale cross-modal
interactions for informative multi-modal fusion. TANet [4]
disigns a three-stream architecture for RGB-D SOD, which
considers the cross-modal complementarity in the encoder
additionally to solve the issue that the two-stream architecture
only focuses the multi-modal representation fusion in the
decoder process.

Generally speaking, these RGB-D SOD methods are
equipped with diverse cross-modal cross-level combination
paths. To alleviate the deficiency of labelled data in training,
they resort to the models well pre-trained on the large-scale
labelled dataset ImageNet [10] to initialized their encoders.
However, these pre-trained encoders are not appropriate to ex-
tract depth features due to the large cross-modal gap between
RGB and depth. To alleviate the dependence on ImageNet pre-
trained weights, [26] proposes to use cross-modal generation
and depth contour estimation as pretexts to pre-train encoders
for each modality and cross-modal interactions. However, their
SSL method is not end-to-end and relies on manually gener-
ating pretext labels from the source depth maps. In contrast
to designing pretext labels and tasks, we adopt the contrastive
learning paradigm and merely use the naturally source data to
implement end-to-end SSL. Also, our motivation is to solve
the modality imbalance in multi-modal contrastive learning,
which significantly differs from [26].

B. Multi-modal Contrastive learning
As one of the typical self-supervised methods, contrastive

learning has been widely used in tasks with single modality.
For example, PIRL [27] maintains a memory bank to store
previously-computed representations, therefore a positive sam-
ple can compare with negative samples quantitively. To address
the expensive cost in maintaining a memory bank, MOCO [15]
stores the representations with a dynamic queue. SimCLR [16]
further simplifies the memory bank and designs an end-to-end
framework along with a large batch-size.

For multi-modal data, several contrastive attempts have
achieved noticeable results [18], [28]–[30]. Tian et al. propose
multiview contrastive learning to maximize the mutual infor-
mation between different views of the same scene. Morgado
[29] proposes to learn audio and visual representations by
optimizing audio-visual cross-modal agreement. Alayrac et al.
[30] leverage visual, audio, and text by a multimodal versatile
network and exploit semantic comparisons of them while
CrossPoint [18] try to capture the compositional correlations
between 3D objects and 2D images to benefit 3D point
cloud understanding. However, these methods ignore the cross-
modal gap and imbalance in contrastive learning, thereby
typically resulting in partial or biased pre-training in the weak
modality.

To address this problem, [19] designs a TupleInfoNCE
for visual representation learning, which disturb the modality
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Fig. 2: The overall architecture of our proposed method.

combination to avoid the domination of the strong modality.
However, TupleInfoNCE remains two problems to be solved.
1. TupleInfoNCE requires to careful tune the hyper-parameters
for tuple disturbing and augmentation, thus being difficult to
well balance modal-shared and modal-specific representations;
2. Their negative samples are heterogeneous and hold varying
distances to the anchor, while they fail to take it into account.
Instead, we reformulate the unbalanced cross-modal agreement
objective to synthetic unimodal instance discrimination by
designing a fusion encoder to integrate paired multi-modal
data. Besides, we alleviate the domination of the strong modal-
ity by proposing a attentive mask to explicitly weaken the
contribution of the strong modality when combining multiple
modalities in the fusion encoder, forcing the contrastive loss
to pay more attention on exploring the representations from
the weak modality.

III. METHOD

A. The Overall Architecture

The overall architecture of our proposed Modality-balanced
Contrastive Fusion framework is shown in Fig. 2. Compare
with the traditional unimodal contrastive learning methods,
we use two encoders to extra features from RGB and depth
respectively and the corresponding representations of positive
samples are generated by momentum encoders [15]. The pre-
training model contains two significant contrastive learning
parts: intra-modal contrastive learning module (IntraCLM)
and inter-modal contrastive learning module (InterCLM) with
different objectives. The IntraCLM adopts MoCo [15] as the
baseline to learn modal-specific features while the InterCLM,
using a synthetic modality combined by paired multi-modal

images as the contrastive instance is performed to remove the
cross-modal gap and capture cross-modal correlations via a
fusion encoder, where a channel attentive masking module is
inserted to encourage the learning of the weak modality.

B. Intra-modal Contrastive Learning Module
The Intra-modal Contrastive Learning Module (IntraCLM)

involves two separate contrastive learning stages: intra-RGB
and intra-depth. We denote the multi-modal RGB-D dataset
as D = {(r1, ..., rK , d1, ..., dK)} where r represents RGB
and d represents depth. Two random data augmentations are
adopted for each anchor to generate two augmented views of
the same sample. Then, they are input into the encoders θq
and θk (denoted as momentum encoder) and additional MLPs
ϕrq , ϕrk are taken to make projections which could benefit
the learning progress [16]. In the dictionary look-up [15], we
describe the former as query and the latter as key. The whole
process can be expressed by the following equation:

qj = fq(Ij ; θq, ϕq), (1)

kj = fk(Ij ; θk, ϕk), (2)

where Ij is the input of the encoder (RGB or depth).
After that, InfoNCE [31] is adopted as our intra-modal loss:

L(q, k+, ki) = −log
exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

, (3)

where K represents the size of the memory bank which
consists of negative samples.

The total intra-modal loss includes the part in both the RGB
and depth modalities and can be formulated as:

Lintra = L(qr, kr+, kri ) + L(qd, kd+, kdi ). (4)



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 4

C. Inter-modal Contrastive Learning Module

After our pre-training model have learned modal-specific
features by IntraCLM, we append the Inter-modal Contrastive
Learning Module (InterCLM) to learn cross-modal correla-
tions and fuse the features from two modalities through a
specifically designed fusion encoder fFq

. Accordingly, the
keys are fused through a fusion momentum encoder fFk

which
have the same structure as the fusion encoder. In doing so, the
complementarity and cross-modal high-level semantic features
of the two modalities can be well explored. For a paired sample
of RGB-D data (rj , dj), we first pass it through two basic
encoders fq and fk to generate intra-modal specific features q
and k, then transfer feature maps to generate fused modalities
features via a fusion encoder. As same as the IntraCLM,
additional MLPs ϕFq , ϕFk

are taken to make projections in
the latent space. The formulation is shown by the following
equation:

qFj = fFq ((q
r, qd); θFq , ϕFq ), (5)

kFj = fFk
((kr, kd); θFk

, ϕFk
), (6)

For each query qF , and key kF+ from the same anchor, we can
formulate the inter-modal contrastive loss as follows:

Linter = −log
exp(qF · kF+/τ)∑K
i=0 exp(q

F · kFi /τ)
, (7)

The total loss combined with InterCLM and IntraCLM can
be formulated as:

J = λ1 ∗ Lintra + λ2 ∗ Linter (8)

where λ1 and λ2 are trade-off hyper-parameters and we set
them as 0.5 equally without further tuning.

D. Fusion Encoder

Fig. 3: The architecture of fusion encoder in the inter-modal
contrastive learning module.

To remove the cross-modal gap and encourage sufficient
pre-training for both the strong and weak modalities in the
contrastive learning process, we propose a fusion encoder in
the InterCLM to convert cross-modal agreement to instance
discrimination in a synthetic modality. Figure. 3 shows the
structure of the fusion encoder. Firstly, the global average
pooling layers are taken to remove the redundant noises while
reducing the computational costs. After that, we adopt the
channel attention operations to enforce our module’s focus on

meaningful areas of the input feature maps. At last, the features
are concatenated in the latent space and passed through the
convolution layers to obtain the fused representation.

E. Attentive Mask for the Strong Modality

Fig. 4: The details of mask for the strong modality.

To make full use of the weak modality (depth), we design
an attentive mask for the strong modality. The specific details
of the mask process is shown in Fig. 4, when computing the
RGB channel attention, we have c channels of RGB features
f1
r , f

2
r , ..., f

c
r . We first sort the channels by attention scores

and the sorted features are f1′

r , f2′

r , ..., f c′

r . Then we mask a
certain proportion of the features with the largest weights, i.e.,
set the important RGB features to 0. The remaining features
fm′

r , fm+1′

r , ..., frc
′ denotes as mask(f ′

r). The fusion features
can be calculated as follow formulas:

Ffused = Conv(Fr ⊗mask(f ′
r)⊕ Fd ⊗ F ′

d), (9)

where ⊗ denotes element-wise multiplication, ⊕ means chan-
nel concatenation, Conv is the convolution layer. In this way,
the depth modality is forced to learn more discriminative
features to complement the masked RGB features in the fusion
process to guarantee the representation ability learned from the
fusion encoder.

F. Suppression and enhancement on learning gradient

In addition to masking the dominant modality, adjusting the
learning gradient on downstream tasks [32], [33] has been
demonstrated to be effective in mitigating modality imbalance.
Specifically, we adopt two encoders ϕr(θr) and ϕd(θd), where
θr and thetad denotes the parameters of rgb encoder and depth
encoder respectively. To simplify the proof, we assume that
after concatenating the features of two modalities, they are
directly passed through a linear layer to output the final logits
output. This process can be represented as:

f(xi) = W (ϕr(θr, xr
i );ϕ

d(θd, xd
i )) + b, (10)

After dividing W into [W r,W d], Equation 10 can be
rewritten as:

f(xi) = W r · ϕr(θr, xr
i ) +W d · ϕd(θd, xd

i ) + b, (11)

With the Gradient Descent optimization method, W r and
the parameters of encoder ϕr(θr) are updated as:

W r
t+1 = W r

t − η▽W rL(W r
t )

= W r
t − η

1

N

N∑
i=1

∂L

∂f(xi)
ϕr(θr, xr

i ),
(12)
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θrt+1 = θrt − η▽θrL(θrt )

= W r
t − η

1

N

N∑
i=1

∂L

∂f(xi)

∂(W r
t · ϕr

t (θ
r, xr

i ))

∂θrt
,

(13)

where η is the learning rate. Observe the Equation 12 and
13, the optimization of W and ϕ is only related to the training
loss ∂L

∂f(xi)
, which can be rewritten as:

∂L

∂f(xi)c
=

e(W
r·ϕr(θr,xr

i )+Wd·ϕd(θd,xd
i )+b)c∑M

k=1 e
(W r·ϕr(θr,xr

i )+Wd·ϕd(θd,xd
i )+b)k

− 1c=yi
.

(14)
As shown in Fig. 1, rgb modality is more confident to

contribute to ∂L
∂f(xi)yi

by W r · ϕr
i , leading to domination of

rgb modality in downstream tasks. Based on the observations
above, we speculate that providing weak-modality-dominated
pre-training parameters for the encoders will alleviate the
problem of downstream modality imbalance. We propose a
method focus on pre-training process to suppress the gradi-
ent for strong modality and enhance the gradient for weak
modality. Specifically, We separate the parameters of RGB
backbone and depth backbone from all the parameters. To
prevent RGB modality from dominating the downstream task
and to promote the comprehensive utilization of the depth
modality, we maintain the base learning rate η=0.007 for other
parameters, and adjust the RGB learning rate to 1

2η and depth
learning rate to 2η in pre-training process.

IV. EXPERIMENTS

A. Datasets

For pre-training, we evaluate the proposed model on five
public RGB-D SOD datasets which are NJUD [37] (1985
image pairs), NLPR [38] (1000 image pairs), DUT [39] (1200
image pairs), ReDWeb-S [40] (3179 image pairs) and COME
[8] (15626 image pairs). We follow the consistent setting in
previous works and choose 1485 image pairs in NJUD, 700
image pairs in NLPR, 800 image pairs in DUT, 2179 image
pairs in ReDWeb-S and 8025 pairs image in COME15K as
the training set and the remaining samples form the testing
set. Labels are not used in this stage.

For the downstream task, we adopt the same training set
as previous methods [5], [26], i.e., 800 samples from the
DUT, 1485 samples from the NJUD and 700 samples from
the NLPR are used for training. The test set involves NJUD,
NLPR, DUT, STERE [41] (1000 image pairs), SIP [42] (929
image pairs), COME-E [8] (3000 image pairs) and COME-H
[8] (2000 image pairs).

B. Evaluation Metrics

We adopt three widely used evaluation metrics to evaluate
our model performance. Specifically, Maximum F-measure
[43] jointly considers precision and recall under the optimal
threshold:

Fβ =
(1 + β2) · Precision ·Recall

β2 · Precision+Recall
, (15)

where β is set to 0.3 as suggested by Liu [44]. Maximum
enhanced-alignment measure Mean Absolute Error (MAE)
computes pixel-wise average absolute error:

MAE =
1

W ∗H

W∑
i=1

H∑
j=1

| Si,j −Gi,j |, (16)

where yi and y
′

i represent the ground truth pixels and the
pixels of the predicted saliency graph respectively. Emax

ρ [45]
simultaneously considers pixel-level errors and image-level
errors:

Emax =
1

W ∗H

W∑
i=1

H∑
j=1

ϕFM (i, j). (17)

C. Implementation Details

The experiment is composed of upstream pre-training and
downstream fine-tuning for the RGB-D SOD task. The pa-
rameters of RGB encoder and depth encoder are obtained
by pre-training learning, and then applied to the downstream
tasks. To clearly show the advantages of our pre-training
scheme, the model parameters (RGB and depth encoders )
obtained by pre-training are frozen, and other parameters of
the downstream model are updated by reverse propagation
when the downstream task is fine-tuned.

Upstream contrastive learning experiment: for the intra-
modal contrastive learning module, we adopt ResNet50 as
the encoder for two modalities. The data augmentation meth-
ods for input samples include random clipping, grayscale
transformation and random flip. The intra-modal temperature
coefficient τintra is set to 0.1. We use the stochastic gradient
descent (SGD) with a momentum of 0.9 and a weight decay
of 0.0002 for optimization. The batch size is set to 64, epoch
is 50, queue size is 16384. We train the model on 2 Tesla
V100.

Fig. 5: The architecture of downstream RGB-D SOD model.

Downstream RGB-D SOD task: the architecture of down-
stream RGB-D SOD model is shown in Fig. 5. We follow [3]
to set the batch size to 16, learning rate to 0.0001, and train
it on Tesla V100 with 100 epochs.

D. Comparison with State-of-the-art

In order to verify the effectiveness of the proposed multi-
modal contrastive learning framework, we compare it with
four supervised SOTA models and two other popular training
strategies random initialization (denoted by ”Random”) and
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TABLE I: Comparisions with state-of-art methods on 5 datasets. ’Supervised’ denotes the backbones are pre-trained on
Imagenet, ‘Scratch’ denotes the backbones are initialized with random parameters, ‘Self-supervised’ means the backbones
are trained with our schema without any annotations.

Dataset Metrics CoNet BBS-Net DCF SPSN ours ours ours BBS-Net
[34] [35] [3] [36] Supervised Scratch Self-supervised Self-supervised

NJUD
maxF ↑ 0.893 0.919 0.913 0.920 0.905 0.862 0.894 0.913
Emax ↑ 0.937 0.949 0.949 0.950 0.942 0.914 0.936 0.945
MAE ↓ 0.046 0.035 0.038 0.032 0.041 0.057 0.043 0.041

NLPR
maxF ↑ 0.893 0.918 0.923 0.910 0.899 0.841 0.887 0.909
Emax ↑ 0.948 0.961 0.961 0.958 0.955 0.896 0.946 0.957
MAE ↓ 0.027 0.023 0.023 0.024 0.026 0.039 0.029 0.026

DUT
maxF ↑ 0.932 0.870 0.920 0.858 0.914 0.828 0.900 0.931
Emax ↑ 0.959 0.912 0.947 0.907 0.944 0.896 0.935 0.946
MAE ↓ 0.029 0.058 0.032 0.053 0.038 0.067 0.043 0.032

STERE
maxF ↑ 0.901 0.903 0.907 0.900 0.892 0.872 0.886 0.904
Emax ↑ 0.947 0.942 0.931 0.943 0.938 0.916 0.936 0.945
MAE ↓ 0.037 0.041 0.037 0.035 0.046 0.048 0.046 0.042

SIP
maxF ↑ 0.873 0.884 0.887 0.886 0.882 0.842 0.874 0.890
Emax ↑ 0.917 0.922 0.920 0.924 0.919 0.895 0.915 0.922
MAE ↓ 0.048 0.055 0.051 0.052 0.056 0.074 0.059 0.051

COME-E
maxF ↑ 0.831 0.837 - 0.831 0.742 0.613 0.722 0.839
Emax ↑ 0.883 0.889 - 0.889 0.822 0.739 0.810 0.885
MAE ↓ 0.071 0.070 - 0.062 0.126 0.163 0.127 0.069

COME-H
maxF ↑ 0.795 0.789 - 0.791 0.710 0.599 0.693 0.794
Emax ↑ 0.840 0.839 - 0.844 0.781 0.709 0.775 0.839
MAE ↓ 0.102 0.105 - 0.094 0.156 0.200 0.162 0.102

TABLE II: Ablation study of training intra-modal only and training intra-modal and inter-modal together.

Settings NLPR DUT COME-E COME-H
maxF ↑ MAE ↓ maxF ↑ MAE ↓ maxF ↑ MAE ↓ maxF ↑ MAE ↓

Intra-modal 0.845 0.039 0.828 0.069 0.531 0.200 0.523 0.231
Intra-modal+Inter-modal 0.867 0.033 0.845 0.061 0.579 0.180 0.567 0.213

Imagenet-pretraining (denoted by ”Supervised”) on five RGB-
D SOD datasets. Our downstream is similar to DCF but
without the pre-process depth calibration block. Tab. I shows
that the performance of our proposed method with an simple
downstream network is close to the current supervised SOTA
models, especially on the NJUD datasets. Fig. 7 shows the
superiority of our detection results in localizing the salient
object and highlight its details.

Compare with the random initialization, our self-supervised
learning brings significant improvement to the downstream
RGB-D SOD task, which illustrates that our self-supervised
learning framework can effectively learn the intra-modal and
inter-modal features.

RGB Depth GT Intra+Inter Intra Supervised

Fig. 6: The comparision of saliency maps generated by our
proposed model, intra-modal encoder and supervised model.

RGB Depth GT CoNet BBSNet Ours

Fig. 7: Comparison with other SOTA methods. ”Our” denotes
the model adopt two-stage strategy, fusion encoder and mask
for strong modality. From the figure we can easily draw the
conclusion that with our proposed methods, the downstream
network has stronger comprehension ability to catch the
saliency objects, no matter in locating or in details.

E. Ablation Study

In this section, we verify the effectiveness of each proposed
structure by ablation experiments, including intra-modal and
inter-modal contrastive learning paths, the attentive mask
module for the strong modality and the two-stage pre-raining
strategy.

Effectiveness of our contrastive learning framework. In
order to verify the effectiveness of the proposed contrastive
learning framework, we compare the traditional contrastive
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TABLE III: Ablation experiments of two-stage training strategy and mask for strong modality.

Dataset Metrics One-stage Two-stage
No mask 25%mask 50%mask 50%mask+GA No mask 25%mask 50%mask 50%mask+GA

DUT [39]
maxF ↑ 0.845 0.853 0.864 0.861 0.900 0.899 0.902 0.900
Emax ↑ 0.905 0.910 0.919 0.917 0.935 0.937 0.935 0.935
MAE ↓ 0.061 0.058 0.054 0.055 0.045 0.043 0.043 0.043

COME-E [8]
maxF ↑ 0.579 0.581 0.594 0.603 0.699 0.705 0.710 0.722
Emax ↑ 0.717 0.720 0.727 0.736 0.790 0.795 0.803 0.810
MAE ↓ 0.180 0.180 0.169 0.176 0.136 0.13 0.128 0.127

COME-H [8]
maxF ↑ 0.567 0.571 0.582 0.589 0.656 0.676 0.684 0.693
Emax ↑ 0.692 0.695 0.701 0.707 0.760 0.762 0.771 0.775
MAE ↓ 0.213 0.210 0.201 0.208 0.170 0.167 0.162 0.162

method with ours. Specifically, traditional contrastive learning
only focuses on intra-modal and extracts unimodal features
respectively, which is denoted as ”Intra-modal” in Tab. II.
Our method consider the complementarity in multi-modal
encoders and extracts their joint features, which is denoted
as ”Intra-modal+Inter-modal” in Tab. II. We can easily find
that training the intra-modal and inter-modal modules together
brings significant improvement over using the intra-modal
module only. Fig. 6 well shows the benefits of our (Intra+Inter)
pre-training scheme, which achieves better details than Intra-
model only and comparable to thesupervised learning model.
Hence, for multi-modal representation learning, it is highly
recommended to additionally learn the complementary cross-
modal features rather than learning the representation of each
single modal respectively. The proposed model combineing
the intra-modal and inter-modal contrastive learning modules,
can successfully learn modal-specific representations and the
cross-modal complementary representations and their combi-
nations at the same time.

Effectiveness of two-stage training strategy. To effectively
explore the complementarity between two modalities, we
propose a two-stage training strategy, i.e., we first train the
intraCML to keep the independence of each modality and
then train the intraCML and interCML together to catch the
correlation between two modalities. Specifically, line ”one-
stage” in Tab. III means the variant that we trains the whole
model together with 150 epoches at a learning rate of 0.07,
line ”two-stage” denotes the variant that we train the intraCML
first with 200 epoch at a learning rate of 0.03 and train both
the intraCML and interCML with 100 epoch at a learning rate
of 0.05. These parameters perform best in their corresponding
training processes. Experiment results in Table 3 show that
two-stage training strategy is largely better than one-stage,
which illustrates that learning well the unimodal features plays
a decisive role in multi-modal representation learning. The
cross-modal representations can be effectively learned only if
the single model representation is strong enough.

Effectiveness of mask for strong modality. To prevent the
strong modality from dominating the Inter-modal CL process
and sufficiently explore the weak modality as well as the
complements between two modalities, we propose an attentive
mask operation for the strong modality. Specifically, we mask
0%, 25% and 50% most discriminative channels in RGB
features and compare their performance on the downstream
RGB-D SOD task. Tab III shows that the attentive mask
operation improves the performance consistently in one-stage

or two-stage training settings, which verifies its efficacy in
encouraging the weak modality to learn more complemen-
tary information and promoting the downstream performance.
Also, we find that masking with 50% performs better than
25%.

Effectiveness of gradient adjustment. Similar to mask
for strong modality, to alleviate the dominance of the strong
modality in downstream tasks, we propose adjusting gradients
during the pretraining process. Tab III shows that gradient
adjustment promote the SOD performance, especially in two
large datasets COME-E and COME-H. Gradient adjustment
balance the multi-modal learning process from the aspect
of gradient, and achieve significant improvement for RGB-D
SOD task.

RGB Depth GT Ours Fusion+Two
stage

Fusion

Fig. 8: The visualization of ablation experiments about fusion
encoder, two stage strategy and mask for strong modality.

F. Compare with Traditional Alignment Methods
Traditional multi-modal contrasitive learning methods ex-

tract the features respectively and adopt cross-modal align-
ment [17], [19], [47] as contrastive objective by shortening
the distance of multi-modal features from the same anchor
scene. Line ”Alignment” in Tab. IV denotes that the align-
ment method and ”Fusion+50%mask” denotes our proposed
modality-balanced CL with a attentive fusion encoder. They
have the same settings in intraCLM with 0.1 temperature
coefficient. For interCLM, the best temperature coefficient
is 0.1 for alignment, and 0.04 for ours. Tab. IV shows that
our proposed modality-balanced contrastive fusion scheme
outperforms the alignment largely on all datasets.

Although the alignment reduces the distance of similar
representations from different modalities, it also closes the
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TABLE IV: Comparison between the traditional alignment and our fusion contrastive schemes.

Datasets Metrics One-stage Two-stage
Alignment Our scheme Alignment Our scheme

DUT
maxF ↑ 0.859 0.861 0.895 0.900
Emax ↑ 0.916 0.917 0.931 0.935
MAE ↓ 0.056 0.055 0.045 0.043

COME-E
maxF ↑ 0.589 0.603 0.698 0.722
Emax ↑ 0.724 0.736 0.799 0.810
MAE ↓ 0.178 0.176 0.130 0.127

COME-H
maxF ↑ 0.578 0.589 0.680 0.693
Emax ↑ 0.699 0.707 0.769 0.775
MAE ↓ 0.210 0.208 0.166 0.162

TABLE V: Ablation study of our designs on RGB-T Salient Object Detection. Scratch means the backbone is trained from
scratch, GA denotes the gradient adjustment operation, AMSM denotes the Attentive Mask for the Strong Modality, Ours
denotes all designs we proposed.

Settings VT5000 [46]
maxF ↑ Emax ↑ MAE ↓

Scratch 0.802 0.904 0.052
Ours-GA-AMSM 0.807 0.906 0.051
Ours-GA 0.811 0.908 0.050
Ours 0.818 0.912 0.048

distance between two nearest but unpaired samples, espe-
cially for hard negative samples, which further lowers the
discriminative ability of model. Therefore, we adopt fusion
operation to combine two modal representations, and drive
the fused representation close to positive samples and away
from negative samples, which prevents hard negetive samples
from resistance to reduce inter-modal differences. Fig. 8 also
shows the advantages of our CL framework, which generates
more uniform and correct salient object detection.

G. Extend to RGB-T Salient Object Detection
Thermal infrared spectrum provides complementary cues

as depth does in salient object detection task. To illustrate
the scalability of our framework, we extend the methods to
RGB-Thermal modality. The experiments are performed on
the VT821 [48] and VT5000 [46] dataset. VT821 includes
821 spatially aligned RGB-T image pairs and VT5000 has
5000 spatially aligned RGB-T image pairs with ground truth
annotations (2500 pairs for training and 2500 pairs for test-
ing). For pretraining, we select 821 RGB-T pairs in VT821
and 2500 RGB-T piars in VT5000 as training dataset. For
downstream RGB-T SOD, we select 2500 pairs from VT5000
for finetuning and the other 2500 piars for testing. Other
super-parameters are consistent with RGB-D experiment as
discussed in Section IV-C. The base RGB-T SOD model in
our experiment is TNet [49].

Tab V shows the ablation study of our designs on RGB-T
Salient Object Detection. The evaluation metrics are the same
with RGB-D SOD tasks which is discussed in Section IV-B.
We find our proposed methods also remains effective in RGB-
T SOD tasks.

V. CONCLUSION

In this work, we propose a new CL for multi-modal dense
prediction. We propose to combine multi-modal pairs as a syn-
thetic modality to remove the modality gap, and an attentive

masking module to rebalance modalities for sufficient training
of each modality and exploration of cross-modal correlations
and informative cross-modal fusion.
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